Polimer Kitosan-Natrium Tripolifosfat Tercetak Molekul: Sintesis dan Aplikasinya untuk Ekstraksi Residu Antibiotik pada Hasil Peternakan
Abstrak
Analisis residu antibiotik menjadi suatu tantangan karena rendahnya konsentrasi dalam matriks barang pertanian yang rumit. Dalam penelitian ini, adsorben selektif yang dikembangkan dari polimer tercetak secara molekuler (MIP) digunakan secara efektif untuk preparasi sampel. Melalui penggunaan polimer tercetak molekul berbasis kitosan(Chi-MIP) , residu tetrasiklin secara efektif diekstraksi dari sampel telur dan susu. Adsorben diabuat dengan memasukkan 0.1 gram Chi-MIP ke dalam kantong yang terbuat dari kertas saring selulosa ukuran 2 x 2 cm. Adsorben dimasukkan ke dalam larutan sampel yang mengandung tetrasiklin. Proses ekstraksi dilakukan dengan menggunakan pengaduk hot plate. Pada akhir proses ekstraksi, antibiotik yang diekstraksi dikeluarkan dari adsorben melalui proses desorpsi dalam pelarut organik menggunakan ultrasonikator. Setelah itu, analit yang terdesorbsi dianalisis menggunakan spektrofotometer UV-Vis pada panjang gelombang 267 nm. Untuk memperoleh hasil optimum, kondisi ekstraksi dioptimasi sehingga diperoleh hasil sebagai berikut: waktu ekstraksi 12 menit, waktu desorpsi 3 menit, dan etil asetat sebagai pelarut organik pendesorbsi. Melalui metode standar adisi, diperoleh hasil validasi metode pada sampel susu dan telur masing-masing menunjukkan rentang linearitas 1–5 mgL-1, koefisien korelasi (R2) sebesar 0.99, nilai akurasi sebesar 98.22% dan 88.10% , presisi sebesar 2.74% dan 1.06%, LoD sebesar 0.46 mgL-1 dan 0.51 mgL-1, LoQ sebesar 1.52 mgL-1 dan 1.70 mgL-1, serta faktor pengayaan sebesar 3.27 kali.
##plugins.generic.usageStats.downloads##
Referensi
Alvarez-lorenzo, C., Blanco-fernandez, B., Puga, A. M., & Concheiro, A. (2013). Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery ☆. Advanced Drug Delivery Reviews, 65(9), 1148–1171.
Amanda, E. R., Rosmawati, A. S., Nurfadlilah, L., Buono, G. P., & Ambari, Y. (2022). Method Validation of Silica Dispersive Solid Phase Extraction Combined with Spectrophotometer UV‒Vis for the Determination of Allopurinol in Herbal Medicine. PHARMACY: Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia), 19(1), 77.
Amanda, E. R., Sanagi, M. M., Wan Ibrahim, W. A., & Raharjo, Y. (2022). Optimization of Thin-film Microextraction using a Polyelectrolyte Multilayer Sorbent Combined with HPLC-UV for Separation and Determination of Tricyclic Antidepressant Residues in Aqueous Samples. Malaysian Journal of Chemistry, 24(2), 166–176.
Arozal, W., Louisa, M., Rahmat, D., Chendrana, P., & Sandhiutami, N. M. D. (2021). Development, characterization and pharmacokinetic profile of chitosan-sodium tripolyphosphate nanoparticles based drug delivery systems for curcumin. Advanced Pharmaceutical Bulletin, 11(1), 77–85.
Bu, T., Jia, P., Sun, X., Liu, Y., Wang, Q., & Wang, L. (2020). Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples. Sensors and Actuators, B: Chemical, 320, 128440.
Büyüktiryaki, S., Keçili, R., & Hussain, C. M. (2020). Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. TrAC - Trends in Analytical Chemistry, 127, 115893.
Dalimunthe, N. A., Alfian, Z., Wijosentono, B., & Eddyanto, E. (2019). Analisa Kualitatif Kandungan Senyawa Metamfetamin Dalam Rambut Pengguna Sabu-Sabu Dengan Metode Ekstraksi Fase Padat (SPE) Menggunakan Adsorben Zeolit Serulla. Ready Star, 1(130–134).
Etikaningrum, E., & Iwantoro, S. (2017). Study of Antibiotics Residue on Poultry Produscts in Indonesia. Jurnal Ilmu Produksi Dan Teknologi Hasil Peternakan, 5(1), 29–33.
Guerle-Cavero, R., Lleal-Fontàs, B., & Balfagón-Costa, A. (2021). Creation of ionically crosslinked tri-layered chitosan membranes to simulate different human skin properties. Materials, 14 (7).
Haryanto, E. (2017). Ekstraksi Monosodium Glutamat (MSG) Menggunakan Molekul Tercetak dalam Polimer Berbasis Kitosan Glutaraldehid dalam Sistem Batch. (Thesis, Universitas Brawijaya), https://repository.ub.ac.id/id/eprint/4663/
International Food Standard. (2023). Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods -2023. FAO/WHO.
Jalalian, S. H., Karimabadi, N., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2018). Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends in Food Science and Technology, 73, 45–57.
Khan, W. A., Arain, M. B., & Soylak, M. (2020). Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food and Chemical Toxicology, 145(111704), 1-13.
Lai, X., Liu, J., Xu, X., Li, J., Zhang, B., Wei, L., Cai, H., & Cheng, X. (2020). Ultrasensitive high-performance liquid chromatography determination of tetracycline antibiotics and their 4-epimer derivatives based on dual effect of methanesulfonic acid. Journal of Separation Science, 43(2), 398–405.
Liu, Z., Hou, J., Wang, X., Hou, C., Ji, Z., He, Q., & Huo, D. (2020). A novel fluorescence probe for rapid and sensitive detection of tetracyclines residues based on silicon quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 240(118463), 1-11.
Mohsenzadeh, M. S., Mohammadinejad, A., & Mohajeri, S. A. (2018). Simple and selective analysis of different antibiotics in milk using molecularly imprinted polymers: a review. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 35(10), 1959–1974.
Moreno-González, D., & García-Campaña, A. M. (2017). Salting-out assisted liquid–liquid extraction coupled to ultrahigh-performance liquid chromatography–tandem mass spectrometry for the determination of tetracycline residues in infant foods. In Food Chemistry, 221, 1763-1769.
Nadzifah, N., Sjofjan, O., & Djunaidi, I. H. (2019). Kajian Residu Antibiotik pada Karkas Broiler dari Beberapa Kemitraan di Kabupaten Blitar. TERNAK TROPIKA Journal of Tropical Animal Production, 20(2), 165–171.
Nemati, M., Farajzadeh, M. A., & Afshar Mogaddam, M. R. (2021). Development of a surfactant-assisted dispersive solid phase extraction using deep eutectic solvent to extract four tetracycline antibiotics residues in milk samples. Journal of Separation Science, 44(10), 2121–2130.
Nemati, M., Farajzadeh, M. A., Mohebbi, A., Khodadadeian, F., & Afshar Mogaddam, M. R. (2020). Development of a stir bar sorptive extraction method coupled to solidification of floating droplets dispersive liquid–liquid microextraction based on deep eutectic solvents for the extraction of acidic pesticides from tomato samples. Journal of Separation Science, 43(6), 1119–1127.
Pérez-Rodríguez, M., Pellerano, R. G., Pezza, L., & Pezza, H. R. (2018). An overview of the main foodstuff sample preparation technologies for tetracycline residue determination. Talanta, 182, 1–21.
Setiawan, A., Widiana, D. R., & Nugroho, P. N. A. (2015). Sintesis dan Karakterisasi Kitosan Mikropartikel dengan Modifikasi Gelasi Ionik. Jurnal Perikanan Universitas Gadjah Mada, 17(2), 90–95.
Soledad-Rodríguez, B., Fernández-Hernando, P., Garcinuño-Martínez, R. M., & Durand-Alegría, J. S. (2017). Effective determination of ampicillin in cow milk using a molecularly imprinted polymer as sorbent for sample preconcentration. Food Chemistry, 224, 432–438.
Susanti, A. D., Sediawan, W. B., Wirawan, S. K., & Budhijanto, B. (2017). Penentuan Pelarut untuk Adsorpsi Oryzanol dari Minyak Bekatul dengan Investigasi Kromatografi Lapis Tipis (Thin Layer Chromatography). Equilibrium Journal of Chemical Engineering, 1(2), 57–63.
Vuran, B., Ulusoy, H. I., Sarp, G., Yilmaz, E., Morgül, U., Kabir, A., Tartaglia, A., Locatelli, M., & Soylak, M. (2021). Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection. Talanta, 230(122307), 1-8.
Wang, G. N., Zhang, L., Song, Y. P., Liu, J. X., & Wang, J. P. (2017). Application of molecularly imprinted polymer based matrix solid phase dispersion for determination of fluoroquinolones, tetracyclines and sulfonamides in meat. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1065–1066, 104–111.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3)Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).