ACE2 EXPRESSION OF HYPERTENSIVE RAT LUNGS GIVEN ACE-I, CCB, AND SWITCHING ACEI TO CCB
Abstrak
Background: Hypertension is the most common comorbid in COVID-19 and ACE2 as a receptor that will bind to the SARS-COV-2 virus, also plays a role in blood pressure regulation. The use of antihypertensive drugs such as ACE-I or CCB may affect ACE2 expression. The use of ACE-I during the pandemic reaped pros and cons which led to suggestions for replacing antihypertensive drug classes such as CCB. Objective: Determine the expression of ACE2 in rat lung tissue after induction of hypertension and continued with the administration of ACE-I (captopril) or CCB (amlodipine), and switching ACE-I to CCB. Method: Post control group design using 30 samples of Sprague dawley rats divided into 5 groups, namely non-hypertension, hypertension, hypertension + ACE-I, hypertension + CCB, and hypertension + ACE-I switching CCB. Induction of hypertension using L-NAME for 6 weeks and blood pressure measurement using non-invasive methods. Administration of antihypertensive drugs is given for 1 week. ACE2 expression was measured using Elabscience's® ELISA kit. Results: ACE2 expression in the nonhypertensive vs. hypertensive group found no significant difference. ACE2 expression in the hypertensive group with ACE-I vs CCB treatment was found to be higher in the CCB group (p = 0.042). ACE2 expression in the hypertensive group with treatment was higher than in the hypertensive group without treatment (p = 0.001). Discussion: ACE2 expression was higher in the group with ACE-I treatment by inhibiting the effects of angiotensin II, so ACE2 levels were increased as a compensatory mechanism. While CCB will increase Angiotensin I levels and decrease the ratio of Angiotensin (1-7) / Angiotensin I and decrease the ratio of ACE2 / ACE Conclusion: ACE2 expression increases in hypertensive lung tissue with treatment of ACE-I, CCB, and switching ACE-I to CCB.
##plugins.generic.usageStats.downloads##
Referensi
Aritomi, S. (2012). Cilnidipine, An L-/N-Type Calcium Channel Blocker, Changes the Circulating Angiotensin–(1-7)/Angiotensin II Ratio. Journal of Hypertension- Open Access, 01(01), 1–6. https://doi.org/10.4172/2167-1095.1000102
Babadaei, M. M. N., Hasan, A., Bloukh, S. H., Edis, Z., Sharifi, M., Kachooei, E., & Falahati, M. (2020). The expression level of angiotensin-converting enzyme 2 determines the severity of COVID-19: lung and heart tissue as targets. Journal of Biomolecular Structure and Dynamics, 0(0), 1–7. https://doi.org/10.1080/07391102.2020.1767211
Bai, S., Huang, Z. G., Chen, L., Wang, J. T., & Ding, B. P. (2013). Effects of felodipine combined with puerarin on ACE2-Ang (1-7)-Mas axis in renovascular hypertensive rat. Regulatory Peptides, 184, 54–61. https://doi.org/10.1016/j.regpep.2013.03.005
Bosso, M., Thanaraj, T. A., Abu-Farha, M., Alanbaei, M., Abubaker, J., & Al-Mulla, F. (2020). The Two Faces of ACE2: The Role of ACE2 Receptor and Its Polymorphisms in Hypertension and COVID-19. Molecular Therapy - Methods and Clinical Development, 18(September), 321–327. https://doi.org/10.1016/j.omtm.2020.06.017
Bulsara, Kishen G. ; Cassagnol, M. (2023). Amlodipine. Statpearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK519508/#:~:text=Peak plasma concentrations are achieved,approximately 40%25 to 60%25.
Burrell, L. M., Burchill, L., Dean, R. G., Griggs, K., Patel, S. K., & Velkoska, E. (2012). Chronic kidney disease: Cardiac and renal angiotensin-converting enzyme (ACE) 2 expression in rats after subtotal nephrectomy and the effect of ACE inhibition. Experimental Physiology, 97(4), 477–485. https://doi.org/10.1113/expphysiol.2011.063156
D’elia, J. A., & Weinrauch, L. A. (2018). Calcium ion channels: Roles in infection and sepsis mechanisms of calcium channel blocker benefits in immunocompromised patients at risk for infection. International Journal of Molecular Sciences, 19(9), 1–17. https://doi.org/10.3390/ijms19092465
Dambha-Miller, H., Albasri, A., Hodgson, S., Wilcox, C. R., Khan, S., Islam, N., Little, P., & Griffin, S. J. (2020). Currently prescribed drugs in the UK that could upregulate or downregulate ACE2 in COVID-19 disease: A systematic review. BMJ Open, 10(9), 1–10. https://doi.org/10.1136/bmjopen-2020-040644
Diaz, J. H. (2021). Hypothesis: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. Journal of Travel Medicine, 27(3), 1–7. https://doi.org/10.1093/JTM/TAAA041
García-Escobar, A., Vera-Vera, S., Jurado-Román, A., Jiménez-Valero, S., Galeote, G., & Moreno, R. (2022). Calcium Signaling Pathway Is Involved in the Shedding of ACE2 Catalytic Ectodomain: New Insights for Clinical and Therapeutic Applications of ACE2 for COVID-19. Biomolecules, 12(1), 1–17. https://doi.org/10.3390/biom12010076
Hamming, ME Cooper, BL Haagmans, NM Hooper, R Korstanje, ADME Osterhaus, W Timens, AJ Turner, G. N. and H. van G. (2007). The emerging role of ACE2 in physiology and disease. 1–11. https://doi.org/10.1002/path
Iizuka, K., Kusunoki, A., MacHida, T., & Hirafuji, M. (2009). Angiotensin II reduces membranous angiotensin-converting enzyme 2 in pressurized human aortic endothelial cells. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 10(4), 210–215. https://doi.org/10.1177/1470320309343710
Jacobs, M., van Eeckhoutte, H. P., Wijnant, S. R. A., Janssens, W., Brusselle, G. G., Joos, G. F., & Bracke, K. R. (2020). Increased expression of ACE2, the SARS-CoV-2 entry receptor, in alveolar and bronchial epithelium of smokers and COPD subjects. European Respiratory Journal, 56(2). https://doi.org/10.1183/13993003.02378-2020
James, P. A., Oparil, S., Carter, B. L., Cushman, W. C., Dennison-Himmelfarb, C., Handler, J., Lackland, D. T., LeFevre, M. L., MacKenzie, T. D., Ogedegbe, O., Smith, S. C., Svetkey, L. P., Taler, S. J., Townsend, R. R., Wright, J. T., Narva, A. S., & Ortiz, E. (2014). 2014 Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA - Journal of the American Medical Association, 311(5), 507–520. https://doi.org/10.1001/jama.2013.284427
Jia, H., Neptune, E., & Cui, H. (2021). Targeting ACE2 for COVID-19 Therapy: Opportunities and challenges. American Journal of Respiratory Cell and Molecular Biology, 64(4), 416–425. https://doi.org/10.1165/rcmb.2020-0322PS
Kemenkes RI. (2019). Hipertensi Si Pembunuh Senyap. Kementrian Kesehatan RI, 1–5. https://pusdatin.kemkes.go.id/resources/download/pusdatin/infodatin/infodatin-hipertensi-si-pembunuh-senyap.pdf
Kementerian Kesehatan, R. (2019). KEPUTUSAN MENTERI KESEHATAN REPUBLIK INDONESIA NOMOR HK.01.07/MENKES/813/2019 TENTANG FORMULARIUM NASIONAL. 8(5), 55.
Khan, S. H., & Zaidi, S. K. (2020). Review of evidence on using ACEi and ARBs in patients with hypertension and COVID-19. Drugs and Therapy Perspectives, 36(8), 347–350. https://doi.org/10.1007/s40267-020-00750-w
Khattak, Z., & Vlachadis Castles, A. (2021). Prescription of Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blocking Agents in Australia During the COVID-19 Pandemic. Heart, Lung and Circulation, 30, S113–S114. https://doi.org/10.1016/j.hlc.2021.06.048
Kim, H. J., Han, S. J., Kim, D. J., Jang, H. C., Lim, S., Choi, S. H., Kim, Y. H., Shin, D. H., Kim, S. H., Kim, T. H., Ahn, Y. B., Ko, S. H., Kim, N. H., Seo, J. A., Kim, H. Y., & Lee, K. W. (2017). Effects of valsartan and amlodipine on oxidative stress in type 2 diabetic patients with hypertension: A randomized, multicenter study. Korean Journal of Internal Medicine, 32(3), 497–504. https://doi.org/10.3904/kjim.2015.404
Kuster, G. M., & Osswald, S. (2020). Switching antihypertensive therapy in times of COVID-19: Why we should wait for the evidence. European Heart Journal, 41(19), 1857. https://doi.org/10.1093/eurheartj/ehaa335
Lebek, S., Tafelmeier, M., Messmann, R., Provaznik, Z., Schmid, C., Maier, L. S., Birner, C., Arzt, M., & Wagner, S. (2020). Angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker treatment and haemodynamic factors are associated with increased cardiac mRNA expression of angiotensin-converting enzyme 2 in patients with cardiovascular disease. European Journal of Heart Failure, 22(12), 2248–2257. https://doi.org/10.1002/ejhf.2020
Li, Y., Zeng, Z., Li, Y., Huang, W., Zhou, M., Zhang, X., & Jiang, W. (2015). ANGIOTENSIN-CONVERTING ENZYME INHIBITION ATTENUATES LIPOPOLYSACCHARIDE-INDUCED LUNG INJURY BY REGULATING THE BALANCE BETWEEN ANGIOTENSIN-CONVERTING ENZYME AND ANGIOTENSIN-CONVERTING ENZYME 2 AND INHIBITING MITOGEN-ACTIVATED PROTEIN KINASE ACTIVATION. 43(4). https://doi.org/10.1097/SHK.0000000000000302
Mills, K. T., Stefanescu, A., & He, J. (2020). The global epidemiology of hypertension. Nature Reviews Nephrology, 16(4), 223–237. https://doi.org/10.1038/s41581-019-0244-2
Mizuiri, S. (2015). ACE and ACE2 in kidney disease. World Journal of Nephrology, 4(1), 74. https://doi.org/10.5527/wjn.v4.i1.74
Pechanova, O., Vrankova, S., & Cebova, M. (2020). Chronic L-Name-Treatment Produces Hypertension by Di ff erent Mechanisms in Peripheral Tissues and Brain : Role of Central eNOS. 46–54.
Pranata, R., Lim, M. A., Huang, I., Raharjo, S. B., & Lukito, A. A. (2020). Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: A systematic review, meta-analysis and meta-regression. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 21(2). https://doi.org/10.1177/1470320320926899
Prof. Giovanni de Simone. (2020). Position Statement of the ESC Council on Hypertension on ACE-Inhibitors and Angiotensin Receptor Blockers. In European Society of Cardiology (pp. 1–1).
Pubmed. (2022). Index @ Pubmed.Ncbi.Nlm.Nih.Gov. National Library of Medicine. https://pubmed.ncbi.nlm.nih.gov/?term=ace2&filter=years.1981-2004&timeline=expanded
Rysz, J., Franczyk, B., Rysz-Górzyńska, M., & Gluba-Brzózka, A. (2020). Pharmacogenomics of hypertension treatment. International Journal of Molecular Sciences, 21(13), 1–26. https://doi.org/10.3390/ijms21134709
Saheb Sharif-Askari, N., Saheb Sharif-Askari, F., Alabed, M., Tayoun, A. A., Loney, T., Uddin, M., Senok, A., Al Heialy, S., Hamoudi, R., Kashour, T., Alsheikh-Ali, A., Hamid, Q., & Halwani, R. (2020). Effect of Common Medications on the Expression of SARS-CoV-2 Entry Receptors in Kidney Tissue. Clinical and Translational Science, 13(6), 1048–1054. https://doi.org/10.1111/cts.12862
Semenzato, L., Botton, J., Drouin, J., Baricault, B., Vabre, C., Cuenot, F., Penso, L., Herlemont, P., Sbidian, E., Weill, A., Dray-Spira, R., & Zureik, M. (2021). Antihypertensive Drugs and COVID-19 Risk: A Cohort Study of 2 Million Hypertensive Patients. Hypertension, 77(3), 833–842. https://doi.org/10.1161/HYPERTENSIONAHA.120.16314
Silva, I. V. G., De Figueiredo, R. C., & Rios, D. R. A. (2019). Effect of different classes of antihypertensive drugs on endothelial function and inflammation. International Journal of Molecular Sciences, 20(14), 5–9. https://doi.org/10.3390/ijms20143458
Sinha, S., Cheng, K., Schäffer, A. A., Aldape, K., Schiff, E., & Ruppin, E. (2020). In vitro and in vivo identification of clinically approved drugs that modify ACE 2 expression . Molecular Systems Biology, 16(7), 1–9. https://doi.org/10.15252/msb.20209628
Soria-castro, E., Ibarra-lara, L., Valle-mondrago, L. Del, Pe, F., Torres-narva, J. C., Cervantes-pe, L. G., Pastelı, G. S., & Ramı, M. (2016). Peroxisome proliferator-activated receptor- a stimulation by clofibrate favors an antioxidant and vasodilator environment in a stressed left ventricle. 68, 692–702. https://doi.org/10.1016/j.pharep.2016.03.002
Trifirò, G., Crisafulli, S., Andò, G., Racagni, G., Drago, F., Berrino, L., Re, M., Bernardini, R., Chiamulera, C., D’Avolio, A., Pani, L., Clementi, E., Capuano, A., Scaglione, F., Danesi, R., Cirino, G., Mugelli, A., Bonanno, G., Brunello, N., … Taglialatela, M. (2020). Should Patients Receiving ACE Inhibitors or Angiotensin Receptor Blockers be Switched to Other Antihypertensive Drugs to Prevent or Improve Prognosis of Novel Coronavirus Disease 2019 (COVID-19)? Drug Safety, 43(6), 507–509. https://doi.org/10.1007/s40264-020-00935-2
Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Collins, K. J., Himmelfarb, C. D., DePalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., MacLaughlin, E. J., Muntner, P., Ovbiagele, B., Smith, S. C., Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J., Williams, K. A., … Wright, J. T. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American college of cardiology/American Heart Association task . In Hypertension (Vol. 71, Issue 6). https://doi.org/10.1161/HYP.0000000000000066
WHO. (2020). COVID-19 and the use of angiotensin-converting enzyme inhibitors and receptor blockers. Scientific brief. Scientific Brief, 16(1), 120–121. https://doi.org/10.15557/PiMR.2020.0023
WHO. (2021). Hypertension. World Health Organization. https://www.who.int/health-topics/hypertension#tab=tab_1
Wysocki, J., Lores, E., Ye, M., Soler, M. J., & Batlle, D. (2020). Kidney and Lung ACE2 Expression after an ACE Inhibitor or an Ang II Receptor Blocker: Implications for COVID-19. Journal of the American Society of Nephrology, 31(9), 1941–1943. https://doi.org/10.1681/ASN.2020050667
Xiong, Q., Cao, L., Ma, C., Tortorici, M. A., Liu, C., Si, J., Liu, P., Gu, M., Walls, A. C., Wang, C., Shi, L., Tong, F., Huang, M., Li, J., Zhao, C., Shen, C., Chen, Y., Zhao, H., Lan, K., … Yan, H. (2022). Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature, 612(7941), 748–757. https://doi.org/10.1038/s41586-022-05513-3
Xudong, X., Junzhu, C., Xingxiang, W., Furong, Z., & Yanrong, L. (2006). Age- and gender-related difference of ACE2 expression in rat lung. Life Sciences, 78(19), 2166–2171. https://doi.org/https://doi.org/10.1016/j.lfs.2005.09.038
Yang, J., Petitjean, S. J. L., Koehler, M., Zhang, Q., Dumitru, A. C., Chen, W., Derclaye, S., Vincent, S. P., Soumillion, P., & Alsteens, D. (2020). Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18319-6
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
##submission.copyrightStatement##
##submission.license.cc.by-nc-sa4.footer##